How Physicists Fool the Gullible World
(trop ancien pour répondre)
Pentcho Valev
2017-05-15 18:43:00 UTC
Raw Message
"Basically you can think of the division between the relativity and quantum systems as "smooth" versus "chunky" or continuously interconnected versus discretely segmented." https://www.meetup.com/Quantum-Physics-Discussion-Group/events/239534553/

Red herring - there is no such dilemma. The actual division is between Einstein's idiotic relative time (a consequence of Einstein's false constant-speed-of-light postulate) and Newton's absolute time:

"The effort to unify quantum mechanics and general relativity means reconciling totally different notions of time. In quantum mechanics, time is universal and absolute; its steady ticks dictate the evolving entanglements between particles. But in general relativity (Albert Einstein's theory of gravity), time is relative and dynamical, a dimension that's inextricably interwoven with directions X, Y and Z into a four-dimensional "space-time" fabric."

"In quantum theory, a "master clock" ticks away somewhere in the universe, measuring out all processes. But in Einstein's relativity, time is distorted by motion and gravity, so clocks don't necessarily agree on how it is passing - meaning any master clock must, somewhat implausibly, be outside the universe."

Perimeter Institute: "Quantum mechanics has one thing, time, which is absolute. But general relativity tells us that space and time are both dynamical so there is a big contradiction there. So the question is, can quantum gravity be formulated in a context where quantum mechanics still has absolute time?"

"In Einstein's general theory of relativity, time depends locally on gravity; in standard quantum theory, time is global – all clocks "tick" uniformly."

"One one hand, time in quantum mechanics is a Newtonian time, i.e., an absolute time. In fact, the two main methods of quantization, namely, canonical quantization method due to Dirac and Feynman's path integral method are based on classical constraints which become operators annihilating the physical states, and on the sum over all possible classical trajectories, respectively. Therefore, both quantization methods rely on the Newton global and absolute time. [...] The transition to (special) relativistic quantum field theories can be realized by replacing the unique absolute Newtonian time by a set of timelike parameters associated to the naturally distinguished family of relativistic inertial frames."

"In quantum mechanics, time is absolute. The parameter occurring in the Schrödinger equation has been directly inherited from Newtonian mechanics and is not turned into an operator. In quantum field theory, time by itself is no longer absolute, but the four-dimensional spacetime is; it constitutes the fixed background structure on which the dynamical fields act. GR is of a very different nature. According to the Einstein equations (2), spacetime is dynamical, acting in a complicated manner with energy momentum of matter and with itself. The concepts of time (spacetime) in quantum theory and GR are thus drastically different and cannot both be fundamentally true."

Pentcho Valev
Pentcho Valev
2017-05-16 06:09:32 UTC
Raw Message
"Special relativity is based on the observation that the speed of light is always the same, independently of who measures it, or how fast the source of the light is moving with respect to the observer. Einstein demonstrated that as an immediate consequence, space and time can no longer be independent, but should rather be considered a new joint entity called "spacetime." http://community.bowdoin.edu/news/2015/04/professor-baumgarte-describes-100-years-of-gravity/

Physicists reject the "immediate consequence", spacetime, but worship the underlying premise, Einstein's false constant-speed-of-light postulate, knowing (or not knowing) that logic forbids the combination "true postulate, wrong consequence". Also, physicists reject spacetime but worship the ripples in spacetime (gravitational waves) gloriously faked by LIGO conspirators:

Nima Arkani-Hamed (06:09): "Almost all of us believe that space-time doesn't really exist, space-time is doomed and has to be replaced by some more primitive building blocks."

What scientific idea is ready for retirement? Steve Giddings: "Spacetime. Physics has always been regarded as playing out on an underlying stage of space and time. Special relativity joined these into spacetime... [...] The apparent need to retire classical spacetime as a fundamental concept is profound..."

Nobel Laureate David Gross observed, "Everyone in string theory is convinced...that spacetime is doomed. But we don't know what it's replaced by."

"Splitting Time from Space - New Quantum Theory Topples Einstein's Spacetime. Buzz about a quantum gravity theory that sends space and time back to their Newtonian roots."

"Rethinking Einstein: The end of space-time. It was a speech that changed the way we think of space and time. The year was 1908, and the German mathematician Hermann Minkowski had been trying to make sense of Albert Einstein's hot new idea - what we now know as special relativity - describing how things shrink as they move faster and time becomes distorted. "Henceforth space by itself and time by itself are doomed to fade into the mere shadows," Minkowski proclaimed, "and only a union of the two will preserve an independent reality." And so space-time - the malleable fabric whose geometry can be changed by the gravity of stars, planets and matter - was born. It is a concept that has served us well, but if physicist Petr Horava is right, it may be no more than a mirage."

"[George] Ellis is up against one of the most successful theories in physics: special relativity. It revealed that there's no such thing as objective simultaneity. [...] Rescuing an objective "now" is a daunting task."

"And by making the clock's tick relative - what happens simultaneously for one observer might seem sequential to another - Einstein's theory of special relativity not only destroyed any notion of absolute time but made time equivalent to a dimension in space: the future is already out there waiting for us; we just can't see it until we get there. This view is a logical and metaphysical dead end, says Smolin."

"Was Einstein wrong? At least in his understanding of time, Smolin argues, the great theorist of relativity was dead wrong. What is worse, by firmly enshrining his error in scientific orthodoxy, Einstein trapped his successors in insoluble dilemmas..."

Pentcho Valev