Discussion:
Confirmations of Einstein's Relativity: Either Fraudulent or Inconclusive
(trop ancien pour répondre)
Pentcho Valev
2017-06-08 08:13:15 UTC
Permalink
Raw Message
The problem is with their number. Einsteinians have been producing "confirmations" of Divine Albert's Divine Theory for more than a century and now critics have to clean up Augean stables - no matter how many frauds you have exposed, you end up buried under Einsteinians' excretions. Yet sometimes even hopeless battles should be fought.

An obvious fraud: Gravitational lensing confirms Einstein's relativity:

"How does gravitational lensing work? If light traveling towards us from some distant star passes by another massive object - say, another star or galaxy - that light gets deflected, and its path is altered. When that light reaches Earth, it appears to be coming from a different direction than its original path. We see the star as being in a different position on the sky than where it's actually located. This apparent movement of the background star is exactly double what you would see in Newtonian gravity; hence, it provides a simple way to test Einstein's theory." http://www.smithsonianmag.com/science-nature/cosmic-lensing-explained-180960136/

In order to be able to find out which prediction - Newton's or Einstein's - is correct, one must know the mass of the "massive object", its precise geometry, and the precise distribution of the mass within this geometry. Such knowledge is only available when the "massive object" is the Sun, and even in this case things are not certain:

"After He Said Einstein Was Wrong, Physicist Henry Hill Learned That Fame's Benefits Are Relative [...] A major proof of Einstein's theory involved a peculiarity in the planet Mercury's orbit, which he attributed to the distortion of space created by the great mass of the sun. Central to the proof was an assumption that the sun is perfectly spherical. But Hill's observations showed that the sun is not perfectly round, a discrepancy that Hill has said may be "Achilles tendon of the general theory." http://people.com/archive/after-he-said-einstein-was-wrong-physicist-henry-hill-learned-that-fames-benefits-are-relative-vol-18-no-10

Pentcho Valev
Pentcho Valev
2017-06-08 09:17:32 UTC
Permalink
Raw Message
Einsteinians often repeat the Pound-Rebka experiment and measure the gravitational redshift, but then inform the brainwashed world that the experiment has confirmed gravitational time dilation, a miraculous effect fabricated by Einstein in 1911:

http://blogs.scientificamerican.com/observations/einsteins-gravitational-redshift-measured-with-unprecedented-precision/
"A new paper co-authored by U.S. Energy Secretary Steven Chu measures the gravitational redshift, illustrated by the gravity-induced slowing of a clock and sometimes referred to as gravitational time dilation (though users of that term often conflate two separate phenomena), a measurement that jibes with Einstein and that is 10,000 times more precise than its predecessor."

http://www.theguardian.com/science/2015/apr/22/record-breaking-clock-invented-which-only-loses-a-second-in-15-billion-years
"Einstein's relativity theory states a clock must tick faster at the top of a mountain than at its foot, due to the effects of gravity. "Our performance means that we can measure the gravitational shift when you raise the clock just two centimetres (0.78 inches) on the Earth's surface," said study co-author Jun Ye."

Actually gravitational time dilation does not exist - any experiment of Pound-Rebka type confirms the variation of the speed of light predicted by Newton's emission theory of light:

http://sethi.lamar.edu/bahrim-cristian/Courses/PHYS4480/4480-PROBLEMS/optics-gravit-lens_PPT.pdf
"If we accept the principle of equivalence, we must also accept that light falls in a gravitational field with the same acceleration as material bodies."

http://www.amazon.com/Relativity-Its-Roots-Banesh-Hoffmann/dp/0486406768
Banesh Hoffmann: "In an accelerated sky laboratory, and therefore also in the corresponding earth laboratory, the frequence of arrival of light pulses is lower than the ticking rate of the upper clocks even though all the clocks go at the same rate. [...] As a result the experimenter at the ceiling of the sky laboratory will see with his own eyes that the floor clock is going at a slower rate than the ceiling clock - even though, as I have stressed, both are going at the same rate. [...] The gravitational red shift does not arise from changes in the intrinsic rates of clocks. It arises from what befalls light signals as they traverse space and time in the presence of gravitation."

https://courses.physics.illinois.edu/phys419/sp2011/lectures/Lecture13/L13r.html
University of Illinois at Urbana-Champaign: "Consider a falling object. ITS SPEED INCREASES AS IT IS FALLING. Hence, if we were to associate a frequency with that object the frequency should increase accordingly as it falls to earth. Because of the equivalence between gravitational and inertial mass, WE SHOULD OBSERVE THE SAME EFFECT FOR LIGHT. So lets shine a light beam from the top of a very tall building. If we can measure the frequency shift as the light beam descends the building, we should be able to discern how gravity affects a falling light beam. This was done by Pound and Rebka in 1960. They shone a light from the top of the Jefferson tower at Harvard and measured the frequency shift. The frequency shift was tiny but in agreement with the theoretical prediction. Consider a light beam that is travelling away from a gravitational field. Its frequency should shift to lower values. This is known as the gravitational red shift of light."

http://www.einstein-online.info/spotlights/redshift_white_dwarfs
Albert Einstein Institute: "One of the three classical tests for general relativity is the gravitational redshift of light or other forms of electromagnetic radiation. However, in contrast to the other two tests - the gravitational deflection of light and the relativistic perihelion shift -, you do not need general relativity to derive the correct prediction for the gravitational redshift. A combination of Newtonian gravity, a particle theory of light, and the weak equivalence principle (gravitating mass equals inertial mass) suffices. [...] The gravitational redshift was first measured on earth in 1960-65 by Pound, Rebka, and Snider at Harvard University..."

Pound, Rebka and Snider knew that their experiments had confirmed the variation of the speed of light predicted by Newton's emission theory of light, not the gravitational time dilation predicted by Einstein's relativity:

http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.4.337
R. V. Pound and G. A. Rebka, Jr, APPARENT WEIGHT OF PHOTONS

http://virgo.lal.in2p3.fr/NPAC/relativite_fichiers/pound.pdf
R. V. Pound and J. L. Snider, Effect of Gravity on Gamma Radiation: "It is not our purpose here to enter into the many-sided discussion of the relationship between the effect under study and general relativity or energy conservation. It is to be noted that no strictly relativistic concepts are involved and the description of the effect as an "apparent weight" of photons is suggestive. The velocity difference predicted is identical to that which a material object would acquire in free fall for a time equal to the time of flight."

Pentcho Valev
Pentcho Valev
2017-06-08 13:39:34 UTC
Permalink
Raw Message
Alväger's idiotic hoax (possible only in Einstein's schizophrenic world):

"There is another obvious possibility, which is called the emitter theory: the light travels at 186,300 miles per second relative to the source of the light. The analogy here is between light emitted by a source and bullets emitted by a machine gun. The bullets come out at a definite speed (called the muzzle velocity) relative to the barrel of the gun. If the gun is mounted on the front of a tank, which is moving forward, and the gun is pointing forward, then relative to the ground the bullets are moving faster than they would if shot from a tank at rest. The simplest way to test the emitter theory of light, then, is to measure the speed of light emitted in the forward direction by a flashlight moving in the forward direction, and see if it exceeds the known speed of light by an amount equal to the speed of the flashlight. Actually, this kind of direct test of the emitter theory only became experimentally feasible in the nineteen-sixties. It is now possible to produce particles, called neutral pions, which decay each one in a little explosion, emitting a flash of light. It is also possible to have these pions moving forward at 185,000 miles per second when they self destruct, and to catch the light emitted in the forward direction, and clock its speed. It is found that, despite the expected boost from being emitted by a very fast source, the light from the little explosions is going forward at the usual speed of 186,300 miles per second. In the last century, the emitter theory was rejected because it was thought the appearance of certain astronomical phenomena, such as double stars, where two stars rotate around each other, would be affected. Those arguments have since been criticized, but the pion test is unambiguous. The definitive experiment was carried out by Alvager et al., Physics Letters 12, 260 (1964)." http://tonic.physics.sunysb.edu/~dteaney/F12_mystery/lectures/fowler.pdf

An idiotic assumption is fabricated - that the remnants of the decayed pion move twice as fast - and it is fraudulently suggested that the assumption belongs to the emission theory.

The experiment refutes the idiotic assumption of course, and in Einstein's schizophrenic world this means definitive rejection of Newton's emission theory of light and glorious confirmation of Divine Albert's Divine Theory.

Pentcho Valev
Pentcho Valev
2017-06-08 16:27:12 UTC
Permalink
Raw Message
The muon-lifetime hoax:

"But the fact that you can see cosmic ray muons at all is enough to prove that relativity is real. Think about where these muons are created: high in the upper atmosphere, about 30-to-100 kilometers above Earth's surface. Think about how long a muon lives: about 2.2 microseconds on average. And think about the speed limit of the Universe: the speed of light, or about 300,000 kilometers per second. If you have something moving at the speed of light that only lives 2.2 microseconds, it should make it only 0.66 kilometers before decaying away. With that mean lifetime, less than 1-in-10^50 muons should reach the surface. But in reality, almost all of them make it down. Why? From our point of view (or frame-of-reference), because of time dilation." https://www.forbes.com/sites/startswithabang/2017/04/27/how-to-prove-einsteins-relativity-for-less-than-100/

The lie here is that the muon "lives 2.2 microseconds" - Einsteinians call this "lifetime of muons at rest". Actually this is the disintegration time of muons that have crashed into the detector at a speed close to the speed of light and are in strong interaction with the molecules of the detector. Comparing this postcatastrophic short amount of time with the lifetime of muons in a vacuum which have not undergone a catastrophe, and declaring that the difference gloriously confirms Einstein's relativity, is possible only in Einstein's schizophrenic world:

http://cosmic.lbl.gov/more/SeanFottrell.pdf
"The lifetime of muons at rest [...] Some of these muons are stopped within the plastic of the detector and the electronics are designed to measure the time between their arrival and their subsequent decay. The amount of time that a muon existed before it reached the detector had no effect on how long it continued to live once it entered the detector. Therefore, the decay times measured by the detector gave an accurate value of the muon's lifetime. After two kinds of noise were subtracted from the data, the results from three data sets yielded an average lifetime of 2.07x 10^(-6)s, in good agreement with the accepted value of 2.20x 10^(-6)s."

http://www.physics.rutgers.edu/ugrad/389/muon/muon-rutgers.pdf
"In order to measure the decay constant for a muon at rest (or the corresponding mean-life) one must stop and detect a muon, wait for and detect its decay products, and measure the time interval between capture and decay. Since muons decaying at rest are selected, it is the proper lifetime that is measured. Lifetimes of muons in flight are time-dilated (velocity dependent), and can be much longer..."

Pentcho Valev
Pentcho Valev
2017-06-08 19:29:15 UTC
Permalink
Raw Message
Arthur Eddington's two crucial hoaxes:

http://backreaction.blogspot.com/2015/04/a-wonderful-100th-anniversary-gift-for.html
Sabine Hossenfelder: "As light carries energy and is thus subject of gravitational attraction, a ray of light passing by a massive body should be slightly bent towards it. This is so both in Newton's theory of gravity and in Einstein's, but Einstein's deflection is by a factor two larger than Newton's. [...] As history has it, Eddington's original data actually wasn't good enough to make that claim with certainty. His measurements had huge error bars due to bad weather and he also might have cherry-picked his data because he liked Einstein's theory a little too much. Shame on him."

http://discovermagazine.com/2008/mar/20-things-you-didn.t-know-about-relativity
"The eclipse experiment finally happened in 1919. Eminent British physicist Arthur Eddington declared general relativity a success, catapulting Einstein into fame and onto coffee mugs. In retrospect, it seems that Eddington fudged the results, throwing out photos that showed the wrong outcome. No wonder nobody noticed: At the time of Einstein's death in 1955, scientists still had almost no evidence of general relativity in action."

http://www.reformation.edu/scripture-science-stott/aarch/pages/10-soddy-to-nobel-prizewinners.htm
Frederick Soddy: "Incidentally the attempt to verify this during a recent solar eclipse, provided the world with the most disgusting spectacle perhaps ever witnessed of the lengths to which a preconceived notion can bias what was supposed to be an impartial scientific inquiry. For Eddington, who was one of the party, and ought to have been excluded as an ardent supporter of the theory that was under examination, in his description spoke of the feeling of dismay which ran through the expedition when it appeared at one time that Einstein might be wrong! Remembering that in this particular astronomical investigation, the corrections for the normal errors of observation - due to diffraction, temperature changes, and the like - exceeded by many times the magnitude of the predicted deflection of the star's ray being looked for, one wonders exactly what this sort of "science" is really worth."

http://www.newscientist.com/article/mg16321935.300-ode-to-albert.html
New Scientist: Ode to Albert: "Enter another piece of luck for Einstein. We now know that the light-bending effect was actually too small for Eddington to have discerned at that time. Had Eddington not been so receptive to Einstein's theory, he might not have reached such strong conclusions so soon, and the world would have had to wait for more accurate eclipse measurements to confirm general relativity."

http://www.epubsbook.com/books/2203_7.html
Stephen Hawking: "Einsteins prediction of light deflection could not be tested immediately in 1915, because the First World War was in progress, and it was not until 1919 that a British expedition, observing an eclipse from West Africa, showed that light was indeed deflected by the sun, just as predicted by the theory. This proof of a German theory by British scientists was hailed as a great act of reconciliation between the two countries after the war. It is ionic, therefore, that later examination of the photographs taken on that expedition showed the errors were as great as the effect they were trying to measure. Their measurement had been sheer luck, or a case of knowing the result they wanted to get, not an uncommon occurrence in science."


Brian Greene (6:47) "Eddington's data, with a little bit of massaging, seemed to show that Einstein's ideas were correct."

In 1919 Arthur Eddington was a solitary fraudster but a few years later he was already a gang boss:

http://puritanreformed.blogspot.bg/2010/08/fallible-nature-of-supposed-objective.html
"Consider the case of astronomer Walter Adams. In 1925 he tested Einstein's theory of relativity by measuring the red shift of the binary companion of Sirius, brightest star in the sky. Einstein's theory predicted a red shift of six parts in a hundred thousand; Adams found just such an effect. A triumph for relativity. However, in 1971, with updated estimates of the mass and radius of Sirius, it was found that the predicted red shift should have been much larger – 28 parts in a hundred thousand. Later observations of the red shift did indeed measure this amount, showing that Adams' observations were flawed. He "saw" what he had expected to see."

http://adsabs.harvard.edu/abs/2010AAS...21530404H
"In January 1924 Arthur Eddington wrote to Walter S. Adams at the Mt. Wilson Observatory suggesting a measurement of the "Einstein shift" in Sirius B and providing an estimate of its magnitude. Adams' 1925 published results agreed remarkably well with Eddington's estimate. Initially this achievement was hailed as the third empirical test of General Relativity (after Mercury's anomalous perihelion advance and the 1919 measurement of the deflection of starlight). It has been known for some time that both Eddington's estimate and Adams' measurement underestimated the true Sirius B gravitational redshift by a factor of four."

http://adsabs.harvard.edu/full/1980QJRAS..21..246H
"...Eddington asked Adams to attempt the measurement. [...] ...Adams reported an average differential redshift of nineteen kilometers per second, very nearly the predicted gravitational redshift. Eddington was delighted with the result... [...] In 1928 Joseph Moore at the Lick Observatory measured differences between the redshifts of Sirius and Sirius B... [...] ...the average was nineteen kilometers per second, precisely what Adams had reported. [...] More seriously damaging to the reputation of Adams and Moore is the measurement in the 1960s at Mount Wilson by Jesse Greenstein, J.Oke, and H.Shipman. They found a differential redshift for Sirius B of roughly eighty kilometers per second."

http://doczz.fr/doc/1099385/pdf--1.4-mo---cea-irfu
Jean-Marc Bonnet-Bidaud: "Le monde entier a cru pendant plus de cinquante ans à une théorie non vérifiée. Car, nous le savons aujourd'hui, les premières preuves, issues notamment d'une célèbre éclipse de 1919, n'en étaient pas. Elles reposaient en partie sur des manipulations peu avouables visant à obtenir un résultat connu à l'avance, et sur des mesures entachées d'incertitudes, quand il ne s'agissait pas de fraudes caractérisées. [...] Autour de l'étoile brillante Sirius, on découvre une petite étoile, Sirius B, à la fois très chaude et très faiblement lumineuse. Pour expliquer ces deux particularités, il faut supposer que l'étoile est aussi massive que le Soleil et aussi petite qu'une planète comme la Terre. C'est Eddington lui-même qui aboutit à cette conclusion dont il voit vite l'intérêt : avec de telles caractéristiques, ces naines blanches sont extrêmement denses et leur gravité très puissante. Le décalage vers le rouge de la gravitation est donc 100 fois plus élevé que sur le Soleil. Une occasion inespérée pour mesurer enfin quelque chose d'appréciable. Eddington s'adresse aussitôt à Walter Adams, directeur de l'observatoire du mont Wilson, en Californie, afin que le télescope de 2,5 m de diamètre Hooker entreprenne les vérifications. Selon ses estimations, basées sur une température de 8 000 degrés de Sirius B, mesurée par Adams lui-même, le décalage vers le rouge prédit par la relativité, en s'élevant à 20 km/s, devrait être facilement mesurable. Adams mobilise d'urgence le grand télescope et expose 28 plaques photographiques pour réaliser la mesure. Son rapport, publié le 18 mai 1925, est très confus car il mesure des vitesses allant de 2 à 33 km/s. Mais, par le jeu de corrections arbitraires dont personne ne comprendra jamais la logique, le décalage passe finalement à 21 km/s, plus tard corrigé à 19 km/s, et Eddington de conclure : "Les résultats peuvent être considérés comme fournissant une preuve directe de la validité du troisième test de la théorie de la relativité générale." Adams et Eddington se congratulent, ils viennent encore de "prouver" Einstein. Ce résultat, pourtant faux, ne sera pas remis en cause avant 1971. Manque de chance effectivement, la première mesure de température de Sirius B était largement inexacte : au lieu des 8 000 degrés envisagés par Eddington, l'étoile fait en réalité près de 30 000 degrés. Elle est donc beaucoup plus petite, sa gravité est plus intense et le décalage vers le rouge mesurable est de 89 km/s. C'est ce qu'aurait dû trouver Adams sur ses plaques s'il n'avait pas été "influencé" par le calcul erroné d'Eddington. L'écart est tellement flagrant que la suspicion de fraude a bien été envisagée."

Pentcho Valev
Pentcho Valev
2017-06-09 06:29:17 UTC
Permalink
Raw Message
Blatantly lying Einsteinians: Einstein was able to predict, WITHOUT ANY ADJUSTMENTS WHATSOEVER, that the orbit of Mercury should precess by an extra 43 seconds of arc per century:

http://physics.ucr.edu/~wudka/Physics7/Notes_www/node98.html
"This discrepancy cannot be accounted for using Newton's formalism. Many ad-hoc fixes were devised (such as assuming there was a certain amount of dust between the Sun and Mercury) but none were consistent with other observations (for example, no evidence of dust was found when the region between Mercury and the Sun was carefully scrutinized). In contrast, Einstein was able to predict, WITHOUT ANY ADJUSTMENTS WHATSOEVER, that the orbit of Mercury should precess by an extra 43 seconds of arc per century should the General Theory of Relativity be correct."


Steven Weinberg (22:08): "People suspect that if you have a known fact, the theorist will be able to jiggle his theory to get it into agreement. If you know anything about the way Einstein developed General Relativity, that's not true. He did not design his theory to explain that extra little motion of Mercury."

Michel Janssen contradicts Steven Weinberg: Einstein did design his theory to explain that extra little motion of Mercury. Janssen describes endless empirical groping, fudging and fitting until "excellent agreement with observation" was reached:

https://netfiles.umn.edu/users/janss011/home%20page/EBms.pdf
Michel Janssen: "But - as we know from a letter to his friend Conrad Habicht of December 24, 1907 - one of the goals that Einstein set himself early on, was to use his new theory of gravity, whatever it might turn out to be, to explain the discrepancy between the observed motion of the perihelion of the planet Mercury and the motion predicted on the basis of Newtonian gravitational theory. [...] The Einstein-Grossmann theory - also known as the "Entwurf" ("outline") theory after the title of Einstein and Grossmann's paper - is, in fact, already very close to the version of general relativity published in November 1915 and constitutes an enormous advance over Einstein's first attempt at a generalized theory of relativity and theory of gravitation published in 1912. The crucial breakthrough had been that Einstein had recognized that the gravitational field - or, as we would now say, the inertio-gravitational field - should not be described by a variable speed of light as he had attempted in 1912, but by the so-called metric tensor field. The metric tensor is a mathematical object of 16 components, 10 of which independent, that characterizes the geometry of space and time. In this way, gravity is no longer a force in space and time, but part of the fabric of space and time itself: gravity is part of the inertio-gravitational field. Einstein had turned to Grossmann for help with the difficult and unfamiliar mathematics needed to formulate a theory along these lines. [...] Einstein did not give up the Einstein-Grossmann theory once he had established that it could not fully explain the Mercury anomaly. He continued to work on the theory and never even mentioned the disappointing result of his work with Besso in print. So Einstein did not do what the influential philosopher Sir Karl Popper claimed all good scientists do: once they have found an empirical refutation of their theory, they abandon that theory and go back to the drawing board. [...] On November 4, 1915, he presented a paper to the Berlin Academy officially retracting the Einstein-Grossmann equations and replacing them with new ones. On November 11, a short addendum to this paper followed, once again changing his field equations. A week later, on November 18, Einstein presented the paper containing his celebrated explanation of the perihelion motion of Mercury on the basis of this new theory. Another week later he changed the field equations once more. These are the equations still used today. This last change did not affect the result for the perihelion of Mercury. Besso is not acknowledged in Einstein's paper on the perihelion problem. Apparently, Besso's help with this technical problem had not been as valuable to Einstein as his role as sounding board that had earned Besso the famous acknowledgment in the special relativity paper of 1905. Still, an acknowledgment would have been appropriate. After all, what Einstein had done that week in November, was simply to redo the calculation he had done with Besso in June 1913, using his new field equations instead of the Einstein-Grossmann equations. It is not hard to imagine Einstein's excitement when he inserted the numbers for Mercury into the new expression he found and the result was 43", in excellent agreement with observation."

In a world different from Einstein's schizophrenic world Henry Hill would be a famous scientist:

http://people.com/archive/after-he-said-einstein-was-wrong-physicist-henry-hill-learned-that-fames-benefits-are-relative-vol-18-no-10
"After He Said Einstein Was Wrong, Physicist Henry Hill Learned That Fame's Benefits Are Relative [...] A major proof of Einstein's theory involved a peculiarity in the planet Mercury's orbit, which he attributed to the distortion of space created by the great mass of the sun. Central to the proof was an assumption that the sun is perfectly spherical. But Hill's observations showed that the sun is not perfectly round, a discrepancy that Hill has said may be "Achilles tendon of the general theory." x

In Einstein's schizophrenic world people like Henry Hill become unpersons:

http://ebooks.adelaide.edu.au/o/orwell/george/o79n/chapter1.4.html
"Withers, however, was already an unperson. He did not exist : he had never existed."

Pentcho Valev
Pentcho Valev
2017-06-09 10:55:24 UTC
Permalink
Raw Message
The de Sitter-Brecher hoax:

"Does the speed of light depend on the speed of its source? Before formulating his theory of special relativity, Albert Einstein spent a few years trying to formulate a theory in which the speed of light depends on its source, just like all material projectiles. Likewise, Walter Ritz outlined such a theory, where none of the peculiar effects of Einstein's relativity would hold. By 1913 most physicists abandoned such efforts, accepting the postulate of the constancy of the speed of light. Yet five decades later all the evidence that had been said to prove that the speed of light is independent of its source had been found to be defective." http://www.martinezwritings.com/m/Relativity.html

Why did physicists abandon Ritz's theory in 1913? Because a fraudster (de Sitter) convinced them to do so:

http://en.wikipedia.org/wiki/De_Sitter_double_star_experiment
"The de Sitter effect was described by de Sitter in 1913 and used to support the special theory of relativity against a competing 1908 emission theory by Walter Ritz that postulated a variable speed of light. De Sitter showed that Ritz's theory predicted that the orbits of binary stars would appear more eccentric than consistent with experiment and with the laws of mechanics, however, the experimental result was negative. This was confirmed by Brecher in 1977 by observing the x-rays spectrum."

Here is Brecher's paper:

http://www.ekkehard-friebe.de/Brecher-K-1977.pdf
K. Brecher, "Is the Speed of Light Independent of the Velocity of the Source?"

Brecher (originally de Sitter) calculates "peculiar effects" that would be produced by an idealized system with no specific parameters if the emission theory is correct. Naturally, real double star systems with mostly unknown parameters do not obey and do not produce the "peculiar effects". Brecher's conclusion: Ritz's emission theory (more precisely, the assumption that the speed of light depends on the speed of the emitter) is unequivocally refuted, and accordingly Divine Albert's Divine Theory is gloriously confirmed.

Refutations and confirmations of this kind can only be valid in Einstein's schizophrenic world. Note that they cannot be criticized - the fact that the parameters of the double star system are mostly unknown prevents critics from showing why exactly the "peculiar effects" are absent.

Pentcho Valev
Pentcho Valev
2017-06-09 17:25:07 UTC
Permalink
Raw Message
The Hafele-Keating hoax:

http://www.ncbi.nlm.nih.gov/pubmed/17779917
J. C. Hafele, Richard E. Keating, Around-the-World Atomic Clocks: Predicted Relativistic Time Gains: "Because the earth rotates, standard clocks distributed at rest on the surface are not suitable in this case as candidates for coordinate clocks of an inertial space. Nevertheless, the relative timekeeping behavior of terrestrial clocks can be evaluated by reference to hypothetical coordinate clocks of an underlying nonrotating (inertial) space."

By "hypothetical coordinate clocks of an underlying nonrotating (inertial) space" Hafele and Keating mean clocks at rest with respect to the center of the Earth. But such clocks are neither "nonrotating" nor "inertial" - they rotate around the Sun, around the center of the Galaxy etc. This means that Hafele and Keating checked the reading of a non-inertial clock against the reading of another non-inertial clock, knowing nothing about the parameters of both non-inertialities, and found that the predictions of Divine Albert's Divine Theory were gloriously confirmed.

Conclusion: Hafele and Keating must have fabricated their results.

Pentcho Valev
Pentcho Valev
2017-06-09 20:57:24 UTC
Permalink
Raw Message
The fundamental fraud in Einstein's schizophrenic world:

Einsteinians teach that in 1887 the Michelson-Morley experiment disproved the existence of the ether but did not disprove the independence of the speed of light from the speed of the source, a tenet of the ether theory later adopted by Einstein as his 1905 second postulate. This is a blatant lie - the truth is that in 1887 the Michelson-Morley experiment UNEQUIVOCALLY disproved the source-independent speed of light and confirmed the source-dependent speed of light predicted by Newton's emission theory of light.

The prediction of Michelson and Morley was not calculated from the premise "There is an ether". It was calculated from the crucial premise

"The speed of light is independent of the speed of the light source"

and since the experimental result did not match the prediction, one should have concluded, logic dictated it, that the crucial premise is false. Michelson and Morley and other physicists did not come to this conclusion of course because they were all etherists.

In their teaching courses Einsteinians do not state the crucial premise as explicitly as I did above, but they cannot completely hide it either. Here is an example:

"First, let us calculate the time required for the light to go from B to E and back. Let us say that the time for light to go from plate B to mirror E is t_1, and the time for the return is t_2. Now, while the light is on its way from B to the mirror, the apparatus moves a distance ut_1, so the light must traverse a distance L + ut_1, at the speed c." http://www.feynmanlectures.caltech.edu/I_15.html

Feynman's last phrase,

"at the speed c",

is equivalent to the crucial premise stated above. If, instead of "at the speed c", we have a new premise,

"at the speed c + u",

taken from Newton's emission theory of light, the calculation (based on the new premise) will give a new prediction - in Feynman's notation we will have

t_1 + t_2 = 2t_3 = 2L/c,

which exactly matches the null result of the Michelson-Morley experiment.

Again: In 1887 (prior to FitzGerald and Lorentz advancing the ad hoc length contraction hypothesis) the Michelson-Morley experiment UNEQUIVOCALLY confirmed the variable speed of light predicted by Newton's emission theory of light and refuted the constant (independent of the speed of the light source) speed of light predicted by the ether theory and later adopted by Einstein as his 1905 second postulate. Yet Einsteinians almost universally teach the opposite - students are assured that the experiment gloriously confirmed the constant and refuted the variable speed of light:

http://www.berkeleyscience.com/relativity.htm
"The conclusion of the Michelson-Morley experiment was that the speed of light was a constant c in any inertial frame. Why is this result so surprising? First, it invalidates the Galilean coordinate transformation. Note that with the frames as defined in the previous section, if light is travelling in the x' direction in frame O' with velocity c, then its speed in the O frame is, by the Galilean transform, c+v, not c as measured. This invalidates two thousand years of understanding of the nature of time and space. The only comparable discovery is the discovery that the earth isn't flat! The Michelson Morley experiment has inevitably brought about a profound change in our understanding of the world."

http://www.amazon.com/Faster-Than-Speed-Light-Speculation/dp/0738205257
Joao Magueijo, Faster Than the Speed of Light: "A missile fired from a plane moves faster than one fired from the ground because the plane's speed adds to the missile's speed. If I throw something forward on a moving train, its speed with respect to the platform is the speed of that object plus that of the train. You might think that the same should happen to light: Light flashed from a train should travel faster. However, what the Michelson-Morley experiments showed was that this was not the case: Light always moves stubbornly at the same speed. This means that if I take a light ray and ask several observers moving with respect to each other to measure the speed of this light ray, they will all agree on the same apparent speed!"

http://www.amazon.com/Brief-History-Time-Stephen-Hawking/dp/0553380168
Stephen Hawking, A Brief History of Time, Chapter 2: "The special theory of relativity was very successful in explaining that the speed of light appears the same to all observers (as shown by the Michelson-Morley experiment) and in describing what happens when things move at speeds close to the speed of light."

http://www.lecture-notes.co.uk/susskind/special-relativity/lecture-1/principles-of-special-relativity/
Leonard Susskind: "One of the predictions of Maxwell's equations is that the velocity of electromagnetic waves, or light, is always measured to have the same value, regardless of the frame in which it is measured. (...) So, in Galilean relativity, we have c'=c-v and the speed of light in the moving frame should be slower than in the stationary frame, directly contradicting Maxwell. Scientists before Einstein thought that Galilean relativity was correct and so supposed that there had to exist a special, universal frame (called the aether) in which Maxwell's equations would be correct. However, over time and many experiments (including Michelson-Morley) it was shown that the speed of light did not depend on the velocity of the observer measuring it, so that c'=c."

http://www.amazon.com/Why-Does-mc2-Should-Care/dp/0306817586
Brian Cox, Jeff Forshaw, Why Does E=mc2?: (And Why Should We Care?), p. 91: "...Maxwell's brilliant synthesis of the experimental results of Faraday and others strongly suggested that the speed of light should be the same for all observers. This conclusion was supported by the experimental result of Michelson and Morley, and taken at face value by Einstein."

So the truth about the Michelson-Morley experiment is widely known (it can even be seen in Wikipedia) and yet Einsteinians brazenly teach the opposite of the truth. And the world seems to accept this as normal. How is that possible? In Einstein's schizophrenic world the old principle of Ignatius of Loyola is valid - everybody finds this principle perfectly reasonable:

Ignatius of Loyola: "That we may be altogether of the same mind and in conformity with the Church herself, if she shall have defined anything to be black which appears to our eyes to be white, we ought in like manner to pronounce it to be black."

Pentcho Valev
Pentcho Valev
2017-06-10 12:49:44 UTC
Permalink
Raw Message
The GPS fraud:

One calculates the distance between the satellite and the receiver by multiplying the time by Einstein's constant speed of light, obtains a wrong value (because the speed of light is variable, not constant), "adjusts the time" in order to fix the wrongness, and finally Einsteinians inform the gullible world that Einstein's relativity (time dilation) is gloriously confirmed:

http://www.wired.com/2011/06/st_equation_gps/
"Your GPS unit registers the exact time at which it receives that information from each satellite and then calculates how long it took for the individual signals to arrive. By multiplying the elapsed time by the speed of light, it can figure out how far it is from each satellite, compare those distances, and calculate its own position. [...] According to Einstein's special theory of relativity, a clock that's traveling fast will appear to run slowly from the perspective of someone standing still. Satellites move at about 9,000 mph - enough to make their onboard clocks slow down by 8 microseconds per day from the perspective of a GPS gadget and totally screw up the location data. To counter this effect, the GPS system adjusts the time it gets from the satellites by using the equation here. (Don't even get us started on the impact of general relativity.)"


GPS & Relativity

Pentcho Valev

Loading...