Pentcho Valev
2023-02-19 09:11:48 UTC
James Hartle, p. 113: "Light falls in a gravitational field with the same acceleration as material bodies." https://www.amazon.com/Gravity-Introduction-Einsteins-General-Relativity/dp/0805386629
"To see WHY A DEFLECTION OF LIGHT WOULD BE EXPECTED, consider Figure 2-17, which shows a beam of light entering an accelerating compartment. Successive positions of the compartment are shown at equal time intervals. Because the compartment is accelerating, the distance it moves in each time interval increases with time. The path of the beam of light, as observed from inside the compartment, is therefore a parabola. But according to the equivalence principle, there is no way to distinguish between an accelerating compartment and one with uniform velocity in a uniform gravitational field. We conclude, therefore, that A BEAM OF LIGHT WILL ACCELERATE IN A GRAVITATIONAL FIELD AS DO OBJECTS WITH REST MASS. For example, near the surface of Earth light will fall with acceleration 9.8 m/s^2." http://web.pdx.edu/~pmoeck/books/Tipler_Llewellyn.pdf
What can be clearer than that? Light falls as per Newton and, accordingly, deflects as per Newton. The problem is that an ideology cannot be based on simple truths extracted from simple experiments, like the accelerating-compartment experiment. Ideologues prefer complicated, confusing, sloppy and, if possible, unrepeatable experiments able to "confirm" any falsehood. In such cases a wrong or fraudulent experimental result cannot be unequivocally rejected and replaced with the truth. Criticism may sound harsh but is actually toothless:
Sabine Hossenfelder: "As light carries energy and is thus subject of gravitational attraction, a ray of light passing by a massive body should be slightly bent towards it. This is so both in Newton's theory of gravity and in Einstein's, but Einstein's deflection is by a factor two larger than Newton's...As history has it, Eddington's original data actually wasn't good enough to make that claim with certainty. His measurements had huge error bars due to bad weather and he also might have cherry-picked his data because he liked Einstein's theory a little too much. Shame on him." http://backreaction.blogspot.com/2015/04/a-wonderful-100th-anniversary-gift-for.html
Michael Brooks: "That's what the astronomer Arthur Eddington did in 1919 when he cherry-picked among his observations of an eclipse. The idea was to prove Einstein's general theory of relativity. However, Eddington's analysis of the data was questionable enough for the Nobel Prize committee to exclude relativity from Einstein's 1921 Nobel Prize for physics. Assessing the merits of relativity was impossible until it was "confirmed in the future," the committee said." https://www.huffpost.com/entry/scientists-behaving-badly_b_1448729
Frederick Soddy, An Address to the fourth Conference of Nobel Prizewinners at Lindau (Bodensee), S. Germany, 30.VI.1954: "Incidentally the attempt to verify this during a recent solar eclipse, provided the world with the most disgusting spectacle perhaps ever witnessed of the lengths to which a preconceived notion can bias what was supposed to be an impartial scientific inquiry. For Eddington, who was one of the party, and ought to have been excluded as an ardent supporter of the theory that was under examination, in his description spoke of the feeling of dismay which ran through the expedition when it appeared at one time that Einstein might be wrong! Remembering that in this particular astronomical investigation, the corrections for the normal errors of observation - due to diffraction, temperature changes, and the like - exceeded by many times the magnitude of the predicted deflection of the star's ray being looked for, one wonders exactly what this sort of "science" is really worth." http://www.reformation.edu/scripture-science-stott/aarch/pages/10-soddy-to-nobel-prizewinners.htm
"This paper investigates an alternative possibility: that the critics were right and that the success of Einstein's theory in overcoming them was due to its strengths as an ideology rather than as a science. The clock paradox illustrates how relativity theory does indeed contain inconsistencies that make it scientifically problematic. These same inconsistencies, however, make the theory ideologically powerful...The gatekeepers of professional physics in the universities and research institutes are disinclined to support or employ anyone who raises problems over the elementary inconsistencies of relativity. A winnowing out process has made it very difficult for critics of Einstein to achieve or maintain professional status. Relativists are then able to use the argument of authority to discredit these critics. Were relativists to admit that Einstein may have made a series of elementary logical errors, they would be faced with the embarrassing question of why this had not been noticed earlier. Under these circumstances the marginalisation of antirelativists, unjustified on scientific grounds, is eminently justifiable on grounds of realpolitik. Supporters of relativity theory have protected both the theory and their own reputations by shutting their opponents out of professional discourse...The triumph of relativity theory represents the triumph of ideology not only in the profession of physics bur also in the philosophy of science." Peter Hayes, The Ideology of Relativity: The Case of the Clock Paradox https://tandfonline.com/doi/abs/10.1080/02691720902741399
See more here: https://twitter.com/pentcho_valev
Pentcho Valev
"To see WHY A DEFLECTION OF LIGHT WOULD BE EXPECTED, consider Figure 2-17, which shows a beam of light entering an accelerating compartment. Successive positions of the compartment are shown at equal time intervals. Because the compartment is accelerating, the distance it moves in each time interval increases with time. The path of the beam of light, as observed from inside the compartment, is therefore a parabola. But according to the equivalence principle, there is no way to distinguish between an accelerating compartment and one with uniform velocity in a uniform gravitational field. We conclude, therefore, that A BEAM OF LIGHT WILL ACCELERATE IN A GRAVITATIONAL FIELD AS DO OBJECTS WITH REST MASS. For example, near the surface of Earth light will fall with acceleration 9.8 m/s^2." http://web.pdx.edu/~pmoeck/books/Tipler_Llewellyn.pdf
What can be clearer than that? Light falls as per Newton and, accordingly, deflects as per Newton. The problem is that an ideology cannot be based on simple truths extracted from simple experiments, like the accelerating-compartment experiment. Ideologues prefer complicated, confusing, sloppy and, if possible, unrepeatable experiments able to "confirm" any falsehood. In such cases a wrong or fraudulent experimental result cannot be unequivocally rejected and replaced with the truth. Criticism may sound harsh but is actually toothless:
Sabine Hossenfelder: "As light carries energy and is thus subject of gravitational attraction, a ray of light passing by a massive body should be slightly bent towards it. This is so both in Newton's theory of gravity and in Einstein's, but Einstein's deflection is by a factor two larger than Newton's...As history has it, Eddington's original data actually wasn't good enough to make that claim with certainty. His measurements had huge error bars due to bad weather and he also might have cherry-picked his data because he liked Einstein's theory a little too much. Shame on him." http://backreaction.blogspot.com/2015/04/a-wonderful-100th-anniversary-gift-for.html
Michael Brooks: "That's what the astronomer Arthur Eddington did in 1919 when he cherry-picked among his observations of an eclipse. The idea was to prove Einstein's general theory of relativity. However, Eddington's analysis of the data was questionable enough for the Nobel Prize committee to exclude relativity from Einstein's 1921 Nobel Prize for physics. Assessing the merits of relativity was impossible until it was "confirmed in the future," the committee said." https://www.huffpost.com/entry/scientists-behaving-badly_b_1448729
Frederick Soddy, An Address to the fourth Conference of Nobel Prizewinners at Lindau (Bodensee), S. Germany, 30.VI.1954: "Incidentally the attempt to verify this during a recent solar eclipse, provided the world with the most disgusting spectacle perhaps ever witnessed of the lengths to which a preconceived notion can bias what was supposed to be an impartial scientific inquiry. For Eddington, who was one of the party, and ought to have been excluded as an ardent supporter of the theory that was under examination, in his description spoke of the feeling of dismay which ran through the expedition when it appeared at one time that Einstein might be wrong! Remembering that in this particular astronomical investigation, the corrections for the normal errors of observation - due to diffraction, temperature changes, and the like - exceeded by many times the magnitude of the predicted deflection of the star's ray being looked for, one wonders exactly what this sort of "science" is really worth." http://www.reformation.edu/scripture-science-stott/aarch/pages/10-soddy-to-nobel-prizewinners.htm
"This paper investigates an alternative possibility: that the critics were right and that the success of Einstein's theory in overcoming them was due to its strengths as an ideology rather than as a science. The clock paradox illustrates how relativity theory does indeed contain inconsistencies that make it scientifically problematic. These same inconsistencies, however, make the theory ideologically powerful...The gatekeepers of professional physics in the universities and research institutes are disinclined to support or employ anyone who raises problems over the elementary inconsistencies of relativity. A winnowing out process has made it very difficult for critics of Einstein to achieve or maintain professional status. Relativists are then able to use the argument of authority to discredit these critics. Were relativists to admit that Einstein may have made a series of elementary logical errors, they would be faced with the embarrassing question of why this had not been noticed earlier. Under these circumstances the marginalisation of antirelativists, unjustified on scientific grounds, is eminently justifiable on grounds of realpolitik. Supporters of relativity theory have protected both the theory and their own reputations by shutting their opponents out of professional discourse...The triumph of relativity theory represents the triumph of ideology not only in the profession of physics bur also in the philosophy of science." Peter Hayes, The Ideology of Relativity: The Case of the Clock Paradox https://tandfonline.com/doi/abs/10.1080/02691720902741399
See more here: https://twitter.com/pentcho_valev
Pentcho Valev