Pentcho Valev
2023-04-26 22:15:05 UTC
The formula
(frequency) = (speed of light)/(wavelength)
says that, if the speed of light were constant, ANY frequency shift would be paired with an inversely proportional wavelength shift. NOT ANY frequency shift is paired with an inversely proportional wavelength shift, so the speed of light is VARIABLE:
"Thus, the moving observer sees a wave possessing the same wavelength...but a different frequency...to that seen by the stationary observer." http://farside.ph.utexas.edu/teaching/315/Waveshtml/node41.html
"Vo is the velocity of an observer moving towards the source. This velocity is independent of the motion of the source. Hence, the velocity of waves relative to the observer is c + Vo...The motion of an observer does not alter the wavelength. The increase in frequency is a result of the observer encountering more wavelengths in a given time." http://a-levelphysicstutor.com/wav-doppler.php
"The Doppler effect is the shift in frequency of a wave that occurs when the wave source, or the detector of the wave, is moving. Applications of the Doppler effect range from medical tests using ultrasound to radar detectors and astronomy (with electromagnetic waves)...A Moving Observer. We will focus on sound waves in describing the Doppler effect, but it works for other waves too...Let's say you, the observer, now move toward the source with velocity Vo. You encounter more waves per unit time than you did before. Relative to you, the waves travel at a higher speed: V' = V+Vo. The frequency of the waves you detect is higher, and is given by: f' = V'/λ = (V+Vo)/λ." http://physics.bu.edu/~redner/211-sp06/class19/class19_doppler.html
"The wavelength is staying the same in this case."
Pentcho Valev https://twitter.com/pentcho_valev
(frequency) = (speed of light)/(wavelength)
says that, if the speed of light were constant, ANY frequency shift would be paired with an inversely proportional wavelength shift. NOT ANY frequency shift is paired with an inversely proportional wavelength shift, so the speed of light is VARIABLE:
"Thus, the moving observer sees a wave possessing the same wavelength...but a different frequency...to that seen by the stationary observer." http://farside.ph.utexas.edu/teaching/315/Waveshtml/node41.html
"Vo is the velocity of an observer moving towards the source. This velocity is independent of the motion of the source. Hence, the velocity of waves relative to the observer is c + Vo...The motion of an observer does not alter the wavelength. The increase in frequency is a result of the observer encountering more wavelengths in a given time." http://a-levelphysicstutor.com/wav-doppler.php
"The Doppler effect is the shift in frequency of a wave that occurs when the wave source, or the detector of the wave, is moving. Applications of the Doppler effect range from medical tests using ultrasound to radar detectors and astronomy (with electromagnetic waves)...A Moving Observer. We will focus on sound waves in describing the Doppler effect, but it works for other waves too...Let's say you, the observer, now move toward the source with velocity Vo. You encounter more waves per unit time than you did before. Relative to you, the waves travel at a higher speed: V' = V+Vo. The frequency of the waves you detect is higher, and is given by: f' = V'/λ = (V+Vo)/λ." http://physics.bu.edu/~redner/211-sp06/class19/class19_doppler.html
"The wavelength is staying the same in this case."
Pentcho Valev https://twitter.com/pentcho_valev